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Abstract 

The MODIS Level-3 optical thickness and effective radius cloud product is a gridded 

1°x1° dataset that is derived from aggregation and subsampling of every 5th pixel, along 

both spatial directions, of Level-2 orbital swath data (Level-2 granules). The present 

study examines the impact of this subsampling on the mean, standard deviation and 

inhomogeneity parameter statistics of optical thickness and effective radius. The 

methodology is simple and consists of estimating mean errors for a large collection of 

Terra and Aqua Level-2 granules by taking the difference of the statistics at the original 

and subsampled resolutions. It is shown that the Level-3 subsampling does not affect the 

various quantities investigated to the same degree, with second order moments suffering 

greater subsampling errors, as expected. Mean errors drop dramatically when averages 

over a sufficient number of regions (e.g., monthly and/or zonal averages) are taken, 

pointing to a dominance of errors that are of random nature. When histograms built from 

subsampled data with the same binning rules as in the Level-3 dataset are used to 

reconstruct the quantities of interest, the mean errors do not deteriorate significantly. The 

results in this paper provide guidance to users of MODIS Level-3 optical thickness and 

effective radius cloud products on the range of errors due to subsampling they should 

expect and perhaps account for, in scientific work with this dataset. In general, 

subsampling errors should not be a serious concern when moderate temporal (e.g., 

monthly) and/or spatial (e.g., zonal) averaging is performed. 
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I. Introduction 

In order to study the global distribution of cloud properties and the main features of their 

monthly, seasonal and diurnal evolution, in other words, in order to examine cloud 

climatology, a gridded set of spatially-averaged cloud retrievals would be the most 

convenient. Such a product is provided for the MODIS instrument aboard the EOS Terra 

and Aqua platforms as Level-3 MOD08* (Terra) and MYD08* (Aqua) datasets [1]. 

There are actually three Level-3 MODIS cloud products available for each platform. 

Statistics are summarized over a 1°x1° global grid for daily (D3), eight-day (E3), and 

monthly (M3) time scales. Each of the Level-3 products contain statistics generated from 

the Level-2 (Orbital Swath) products. Statistics for a given derived quantity or Science 

DataSet (SDS) might include: simple (mean, minimum, maximum, standard deviation) 

statistics; parameters of normal and lognormal distributions; fraction of pixels that satisfy 

some condition (e.g. cloudy, clear); histograms of the quantity within each gridpoint; 

histograms of the confidence placed in the retrieved quantity; histograms and/or 

regressions derived from comparing one science parameter to another; statistics 

computed for a subset that satisfies some condition [1]. All these statistics are computed 

by subsampling pixel-level values of 1 km nadir resolution every 5th pixel, along both 

spatial directions, since the geolocation internal to the MOD06 (Level-2) cloud product is 

5 km [1]. Thus, cloud optical thickness or effective radius statistics for an overcast 1°x1° 

gridpoint around the equator that contains pixels observed at near-nadir view angles, 

come from about ~480 pixels instead of the ~12,000 1-km pixels that are originally 

contained within the gridpoint. The subject of this study is to examine whether the 

process of subsampling has distorting effects on several Level-3 SDSs and other 
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quantities of interest derived from them. This is obviously an important issue for current 

and future users of the Level-3 cloud dataset who intend to compare MODIS cloud 

climatologies with those from other sources. 

The outline of the paper is as follows: First, we present in section II the dataset used 

to examine the subsampling effect, the SDSs and other quantities we are interested in, 

and discuss the methodology for analyzing the subsampling errors. In section III we 

present results for optical thickness statistics, and in section IV for effective radius 

statistics. Section V, examines whether the findings in sections III and IV are affected 

when the quantities of interest are derived from histograms built following Level-3 

binning rules for optical thickness and effective radius. The final section consists of an 

overview discussion on our findings and their implications for users of MODIS Level-3 

cloud climatologies. 

 

II. Dataset and methodology 

We use 300 Level-2 granules, each consisting of 2030 pixels along track and 1354 pixels 

across track, obtained for various post-2000 November months for both Terra (200 

granules) and Aqua (100 granules). The granules are largely confined within 20°N to 

60°N (with most granule centers falling within 20°N and 50°N), while covering the full 

meridional range. They contain a wide variety of cloud scenes with different phases, 

cloud fraction, thickness and degree of inhomogeneity. For those pixels identified as 

cloudy from the cloud masking algorithm [2], the cloud phase is determined (“liquid”, 

“ice”, “undetermined”) and subsequently cloud optical thickness, τ, and cloud effective 

radius, reff,  (ratio of the third to the second moment of the cloud particle radius 
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distribution) is retrieved (among others) [3]. The retrievals used here come from the 0.65 

µm (over land) and 0.86 µm (over ocean) bands that are the most sensitive to changes in 

cloud optical thickness, in conjunction with the 2.1 µm band which is most sensitive to 

changes in cloud particle size [3]. The resolution of these retrievals (pixel size) is 1 km 

for near-nadir observations, but decreases gradually (pixel size increases) with view angle 

[4]. In this study, the pixel-by-pixel phase determination for our dataset will be largely 

ignored since it is not an essential factor in subsampling error estimates as will become 

evident later. The only instance where phase enters the discussion is in section V where, 

due to different histogram binning rules for the two phases, all cloudy pixels are assumed 

to be of one or the other phase. 

In the Level-3 dataset, the statistics of each 1°x1° gridpoint (near the equator) are 

derived by subsampling and aggregating every 5th of approximately 110x110 pixels near-

nadir (1 km resolution). However, the available number of pixels to be subsampled 

approximately decreases with the cosine of latitude as one moves poleward. For example, 

at ~83°, each 1°x1° gridpoint is made of ~1600 1 km pixels. At the same time, for 

observations close to the edge of the orbital swath, due to pixel expansion, fewer pixels 

are needed to cover a 1°x1° geographic area (an effect somewhat compensated by 

accompanying pixel overlap, [4]). Thus, the number of pixels used to construct the Level-

3 statistics can potentially become quite small, especially when only a fraction of the 

gridpoint is cloudy (as is often the case). The impact of the varying number of pixels used 

to construct Level-3 statistics has to be therefore taken into account in the analysis. 

The approach used in this work is the following: The granules are divided into 

110x110, 100x100… 40x40 pixel regions (i.e., 8 regions sizes). Since one of the main 
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goals is to examine the effects of subsampling on the cloud optical thickness 

inhomogeneity climatology presented in the paper by Oreopoulos and Cahalan [5], only 

regions with cloud fraction (fraction of pixels with non-zero optical thickness) greater 

than 0.1 are considered, as in that work. For each of these regions (e.g. ~53,000 regions 

of 110x110 pixels), and for the optical thickness part of the analysis, cloud fraction (CF), 

spatial mean of optical thickness 

  

! , standard deviation of optical thickness στ, and the 
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are calculated. In eq. (1b), 

  

y = ln! " ln! . The first two equations provide two different 

ways to estimate the shape parameter of a gamma distribution which has been found to 

describe well observed distributions of cloud optical thickness [6], [7]. The first equation 

is for the Method Of Moments (MOM), and the second is an empirical approximation for 

the Maximum Likelihood Estimate (MLE) method which gives a shape parameter less 

sensitive to outliers [8]. The third equation is the definition of the inhomogeneity 

parameter of Cahalan et al. [9] which approximates the factor by which 

  

!  should be 

multiplied to recover the mean albedo of a region. For the effective radius part of the 

analysis, the mean and standard deviation of effective radius are calculated. 
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For both optical thickness and effective radius two methods of calculation are used: 

1) all the cloudy pixels within the region are included; and 2) only every 5th pixel along 

both spatial directions, if it happens to be cloudy, is included. The percentage difference 

of the values obtained from the above two methods gives the impact of subsampling as a 

percentage error (positive signifies that subsampling underestimates). Cloud phase is 

ignored in this procedure, so the means and standard deviations obtained closely 

correspond to their counterpart SDSs for “Combined Optical Thickness” and “Combined 

Effective Radius” in the Level-3 MODIS products. 

The analysis shown in the following also accounts for the fact that, at most times, 

we are not interested in the error of a single region, but in the error of an ensemble of 

regions. For example, in the work by Oreopoulos and Cahalan [5] the authors are 

interested in the climatology of χ and ν, so they examine monthly, zonal, and global 

averages of these quantities. The mean error of an ensemble of 30 regions can then be 

thought of as the mean monthly sampling error for a single 1°x1° gridpoint. Similarly, the 

error for an ensemble of 90 regions can be thought of as the mean seasonal sampling 

error of a single gridpoint, the error of an ensemble of 360 regions as the mean annual 

sampling error of a single gridpoint or the daily error of a latitude zone, and the error for 

an ensemble of 10,000 regions (~30x360) as the mean monthly subsampling error of a 

latitude zone. To examine these “climatological” errors, 1000 ensembles of regions are 

constructed with each ensemble resulting from assembling in a random fashion, a 

prespecified number of regions (1, 30, 90, 360, 10,000) for each of the 8 region sizes, so 

that 5000 ensembles correspond to each region size, i.e., 1000 consisting of 1 region, 

1000 consisting of 30 regions, etc. The distribution of errors for these 40,000 ensembles 
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can then be examined. The random fashion with which the ensembles are built also 

ensures that regions observed under a variety of viewing angles are combined, thus 

crudely simulating the fact that over a period of time each 1°x1° gridpoint contains pixels 

viewed under a wide range of scan angles (a similar argument applies for gridpoints that 

make up a latitude zone). Still, it is not clear that pixel expansion at large view angles 

systematically increases the subsampling errors. Indeed, when regions consisting of the 

same number of pixels, but viewed at near-nadir and the largest view angles (i.e., larger 

regions at the edges of the swath) were compared with respect to subsampling errors, 

they were not substantially different. This may be because pixel expansion with view 

angle is accompanied by simultaneous pixel overlap [4] which tends to reduce 

subsampling effects. 

 

III. Optical thickness errors 

Figure 1 shows the errors of subsampling (in %) of 

  

!  and στ  for all (~53,700) 110x110 

regions of our dataset (except for those few whose errors fall outside the ±50% bounds of 

the plot). Errors for individual regions are often quite large, although the greatest 

concentration of points is within the  ±20% error bounds. There is about the same number 

of regions with positive and negative errors in 

  

! , and the same applies for στ. This is a 

good indication of the random nature of these errors. For most regions (~76.6% of the 

regions) overestimates in 

  

!  by subsampling are accompanied by overestimates in στ and 

vice-versa (upper-right and lower-left quadrants), but the number of regions where the 

error is of opposite sign is still substantial. The top panel of Fig. 2 shows a similar graph, 

but this time for CF and χ. The errors in this case are generally smaller with the densest 
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concentration of points confined within the ±10% error bounds. The number of regions 

on each quadrant is now distributed more evenly than in the previous figure. The bottom 

panel shows the % errors in χ for each region as a function of the cloud fraction of the 

region before subsampling, and indicates that the distribution of χ errors tightens around 

smaller values as cloud fraction increases. 

Figure 3 shows the mean error for 110x110 pixel regions as a function of cloud 

fraction. Each value was obtained by averaging the errors of regions that have cloud 

fraction within the predetermined 0.1-width bin. Note that the last bin has by far the most 

values consistent with the well-known U-shape behavior of cloud fraction distributions. 

This figure shows prominently the dramatic effect of averaging a large number of random 

errors: the mean errors of ensembles of ~5,000 regions and above are very small, with the 

exception of νMOM at small cloud fractions. The larger impact of sampling on νMOM 

compared to the other two inhomogeneity parameters can be easily explained: both χ and 

νMLE depend on first moment quantities (the linear mean and the mean logarithm of 

optical thickness, the former being simply the ratio exp(

  

ln! )/

  

! , and the latter being a 

function of the difference ln

  

! –

  

ln! ), while νMOM depends on a second moment quantity 

(στ) which is more sensitive to subsampling. Between νMLE and χ, the latter is less 

affected by subsampling. There are two reasons for this. First, χ is defined simply as the 

ratio of two quantities while νMLE is a more intricate function of the linear mean and mean 

logarithm difference (eq. 1b), and is therefore subject to greater error propagation. 

Second, χ has an upper bound of 1, by definition, while νMLE (and, of course, νMOM) are 

unbounded. Despite the fact that regions with νMLE or νMOM greater than 40 are excluded 
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in the analysis to eliminate contributions from pathological cases, some residual impact 

from regions with large νΜΟΜ, where its value can be easily affected by subsampling, 

remains. Thus, the unbounded nature of νΜΟΜ is responsible for the apparent paradox that 

some of the most homogeneous regions can also potentially be the ones suffering from 

the greatest percentage subsampling errors for this particular parameter. 

Further evidence of the beneficial effects of averaging errors over a group of 

regions is shown in Fig. 4. These percentage errors of χ and νMLE are for 1000 ensembles 

each consisting of 30- and 10,000- regions. The size of each region in these randomly 

constructed ensembles is 110x110 pixels. As discussed in section 2, the mean error of an 

ensemble of 30 regions is meant to represent typical monthly average errors of individual 

gridpoints, while the mean error of an ensemble of 10,000 regions approximates typical 

monthly-average errors of latitude zones. The mean error of 30-region ensembles almost 

always stays within ±2% for χ and within ±10% for νMLE. The mean errors of ensembles 

consisting of 10,000 regions are much smaller than the 30-region ensembles and cluster 

within a very small range of values. The clustering is not surprising since each of the 

10,000-region ensembles, even if constructed randomly, contains many common regions 

with the other ensembles because the population from which it is drawn is only larger by 

an approximate factor of 5 (there are ~53,700 110x110 regions in the dataset). It is also 

interesting that the mean errors of 10,000-region ensembles are always positive for χ. 

This is because of the tight range of χ errors and the fact that a slightly larger number of 

regions with positive errors exists (Fig. 2, top, indicates that 52.7% of regions have 

positive errors). On the other hand, because of the wider range of νMLE errors, there are 
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both positive and negative mean errors for 10,000-region ensembles. The positives 

dominate due to the larger fraction of positive errors for individual regions (~55%). 

Another way to assess the errors of subsampling on optical thickness statistics is 

shown in Fig. 5. The top panel shows the bounds of percentage errors than contain 95% 

of the 1000 ensembles, for ensembles consisting of various region numbers (each of 

110x110 pixel size) as indicated in the abscissa. For example, the top panel of Fig. 5 

indicates that 95% (950) of 90-region ensembles have mean errors of νMOM within ±5.2% 

(3rd point of topmost curve). CF and χ have the smallest error bounds that contain 95% of 

the ensembles, followed by 

  

! , νMLE, and νMOM. For ensembles consisting of 10,000 

regions the error range that contains 95% of the ensembles is smaller than ±2% for all 

quantities (±0.25% for χ!). The bottom panel of Fig. 5 shows the percentage error range 

that contains 95% of 30-region ensembles of region size indicated in the abscissa. For 

example, 95% of 30-region ensembles have νMOM subsampling errors within ±12.95% 

when the region size is 60x60 pixels (third point of topmost curve). Because the number 

of ensembles is kept constant at 1000 for each region size (even if more regions of 

smaller size actually exist in the dataset), it is not surprising that there is a tendency for 

the error range that contains 95% of the ensembles to decrease with region size. In other 

words, subsampling errors are expected to grow for regions consisting of a smaller 

number of cloudy pixels (i.e., 1°x1° gridpoints at higher latitudes, gridpoints containing 

many edge-of-swath pixels, or gridpoints with smaller cloud fractions). 

Finally, one must note that the errors discussed in this section (as well as in the next 

two sections) for small region sizes (high latitudes) may in some cases actually be 

overestimates of the errors resulting from the actual Level-3 processing. The reason is 
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that the number of pixels falling within a 1°x1° gridpoint each day is greater than that 

from a single orbital swath. This is because of the overlap of successive Terra and Aqua 

orbits (except near the equator), which becomes especially pronounced at high latitudes. 

Hence, the drastic reduction with latitude of the number of pixels contained in 1°x1° 

gridpoints is to some extent compensated by repeated sampling of the region as it is being 

covered by multiple satellite passes. 

 

IV. Effective radius errors 

The analysis in this section follows on the footsteps of the analysis in the previous 

section. Case in point, Fig. 6 is the counterpart of Fig. 1, i.e., it shows the errors for all 

110x110 pixel regions, but this time for the mean and standard deviation of effective 

radius. There are similarities with Fig. 1, such as the rapid decrease in the density of 

points outside the ±20% error range, but also differences such as the stronger dominance 

of positive errors for both the mean and the standard deviation. Indeed, only 21.3% of 

110x110 regions have negative errors in the mean, and 33.3% have negative errors in the 

standard deviation. This explains the lack of negative errors when averaging is performed 

over a larger number of regions, as in Fig. 7 and 8. These show (similar to their 

counterpart Figs. 3 and 4) the mean error of effective radius mean and standard deviation 

for 110x110 pixel regions falling within different cloud fraction bins (Fig. 7) and the 

mean errors of 1000 ensembles of 30 or 10,000 110x110 pixel regions as a function of 

the corresponding perfectly sampled quantity (Fig. 8). Fig. 7 suggests that mean errors of 

subsampling for mean effective radius are slightly greater than those for mean optical 

thickness, while somewhat unexpectedly the error in standard deviation does not improve 
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with cloud fraction; it does however improve with region size as shown in the bottom 

panel of Fig. 9 which is analogous to Fig. 5, showing the error range containing 95% of 

the ensembles. Also, there seems to be resistance in reducing the mean errors below 2% 

even when ensembles consist of 10,000 regions (Fig. 8, and top panel of Fig. 9). 

All the above points to systematic biases in the statistics of effective radius when 

subsampling is performed: apparently, subsampling yields frequent systematic 

underestimates of both the mean and the standard deviation of effective radius, i.e., errors 

are not always random. This curious phenomenon was further explored by examining 

effective radius histograms retrieved from perfectly-sampled and subsampled data. When 

the collective (i.e., from all 300 granules) normalized frequency distributions of 

combined effective radius (i.e., both liquid and ice clouds) were plotted with a 1 µm bin 

resolution (not shown), there were small but noticeable differences between the 

histograms: a larger normalized frequency at small effective radii and a smaller at large 

effective radii occurred for the subsampled retrievals. These differences were large 

enough to result in systematically smaller effective radii for the subsampled data in the 

majority of regions to which we divide the granules. They also resulted in somewhat 

narrower histograms for the subsampled data which explains the tendency for positive 

subsampling errors in standard deviation. When the histogram analysis was repeated 

separately for the Terra and Aqua granules, histogram differences appeared only for the 

Terra platform (incidentally, subsampled and perfectly-sampled histograms of optical 

thickness were virtually indistinguishable for both platforms). When Terra effective 

radius histograms were then constructed separately (not shown) for retrievals 

corresponding to different pairs of detector elements (the 2.1 µm band has 20 detector 
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elements each of 500 m resolution for a total viewing path of 10 km along track, so for 

the 1 km effective radius Level-2 product, measurements from 2 detectors are 

aggregated), one of the histograms stood out as having characteristics such as those 

described above for the ensemble histogram of subsampled data. This histogram was 

from the detector pair that yielded lines 1, 11, 21, 31, etc. of the granule which are 

included in the subsampled dataset of this analysis as well as the actual MODIS Level-3 

processing. Thus, bias errors can appear in subsampled Level-3 data if pixel lines with 

distinct radiative characteristics (and therefore distinct retrieved values) than the other 

lines are systematically selected by the subsampling algorithm. This is exactly what 

occured in this case, and while the bias errors were small in magnitude, they were still 

easily detected by the subsampling analysis. 

 

V. Errors from histograms 

The MODIS Level-3 cloud product also includes SDSs that are histograms of cloud 

optical thickness and effective radius. These are also constructed from subsampled data. 

Although the statistical quantities and parameters examined here are either given directly 

as distinct SDS products (

  

! , στ, 

  

ln! ) or can be trivially derived from them using eq. (1) 

(χ, νMOM, νMLE), it would be interesting to obtain an assessment of the errors when the 

same quantities are calculated from the histogram SDSs. 

The three moments, 

  

! , στ, 

  

ln! , that are needed for eq. (1) are derived from the 

discrete probability distribution p(τ) built from the histograms for each region (of the 8 

regions sizes) using values subsampled every 5th pixel as follows: 
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Equations analogous to (2a) and (2b) apply for effective radius mean and standard 

deviation. The number of bins N varies according to the type of histogram, and the values 

used for each case will be given below. It should be underlined that the subsampling error 

is defined in this case as the difference between the value of the desired quantity 

calculated from the perfectly-sampled data directly (i.e., not from histograms constructed 

from perfectly-sampled data) and the value derived using eq. (2) and histograms built 

from data subsampled every 5th pixel along both spatial directions. 

Figure 10 shows optical thickness results and is the counterpart of the bottom panel 

of Fig. 5. The top panel is for calculations using MODIS Level-3 binning for liquid 

clouds (N = 45 bins) and the bottom is for calculations using ice cloud binning (N = 30 

bins). Both histograms extend up to a value of 100 for optical thickness, but the width of 

the bins is different (the ice histograms better resolve small values of optical thickness 

and use coarser binning for large values). Results for both panels of Fig. 10 look similar 

to the results in the bottom panel of Fig. 5, except for the νMLE error with liquid cloud 

histogram binning which is worse for most region sizes from its counterpart νMOM. 

Figure 11 is for effective radius and is the counterpart of the bottom panel of Fig. 9. 

The top panel is for calculations using histogram binning for liquid clouds and the bottom 
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is for calculations with ice cloud binning. The former originally uses N=23 bins in the 

Level-3 dataset, extending from 2 to 30 µm, but a 24th very wide bin was added from 30 

to 60 µm to accommodate the large particle effective radii encountered in the current  

dataset. The latter uses N=12 histogram bins extending from 6 to 60 µm. Again, there is 

little difference from what has already been shown in Fig. 9, with the exception of the 

error in standard deviation when the liquid cloud histogram binning is used. This is 

probably the result of the coarse last bin that was arbitrarily added. Results with ice cloud 

binning do not seem to be much affected by omission of particle sizes below 6 µm. 

In conclusion, for monthly or longer time scales, one can reconstruct cloud optical 

thickness or effective radius moments and optical thickness inhomogeneity parameters 

from MODIS Level-3 histograms (built from data subsampled every 5th pixel) for a 1°x1° 

region, without suffering much additional subsampling error relative to the case where 

the moments and parameters come from distinct Level-3 SDSs. 

 

VI. Summary and conclusions 

Cloud optical thickness and effective radius Scientific Datasets (SDSs) in the MODIS 

Level-3 daily, eight-day, and monthly products come from aggregation on a 1°x1° grid of 

Level-2 orbital swath data that have been subsampled every 5th pixel along both spatial 

directions (along and across the satellite track). The present study examined the impact of 

this subsampling on cloud fraction, the mean and standard deviation of optical thickness 

and effective radius, as well as on parameters that convey the radiative impact of optical 

thickness variability. The subsampling effect was quantified as the percentage difference 

between perfectly-sampled and subsampled results for ensembles of regions with size on 
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the order of 1°x1°. The perfectly-sampled data come from 300 Terra and Aqua granules 

obtained at northern subtropics/midlatitudes for several post-2000 November days. 

It was shown that Level-3 subsampling does not affect the various quantities 

investigated to the same degree, with second order moments and quantities depending on 

second order moments suffering greater subsampling errors, as expected. For individual 

regions consisting of 110x110 pixels (about 1°x1° around the equator) the vast majority 

of regions have errors within ±20% for mean and standard deviation of optical thickness 

and effective radius. Errors for cloud fraction and the inhomogeneity parameter χ are 

smaller, and errors for the inhomogeneity parameters νMOM and νMLE are greater 

(especially for νMOM). Mean errors drop dramatically when averages over a sufficient 

number of regions (e.g., monthly and/or zonal averages) are taken: for ensembles of 30 

regions (corresponding to monthly averages) errors for most regions sizes are less than 

15% for νMOM and νMLE 95% of the time, while for the other quantities they are generally 

below 5%. Subsampling errors seem to be mostly of random nature, but evidence was 

found of small but systematic underestimates for effective radius mean and standard 

deviation. This was traced back to systematic differences in the retrievals from different 

2.1 µm band detectors: the subsampling procedure was systematically picking a pixel line 

(from the first two detectors) with radiatively different appearance from the other pixel 

lines; this pixel line is used in the actual MODIS Level-3 aggregation and subsampling 

algorithm. Finally, when histograms built from subsampled data with the same binning 

rules as in the Level-3 dataset are used to reconstruct the quantities of interest, the mean 

errors at monthly scales do not deteriorate significantly. 
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It may be worth mentioning that subsampling error analysis was also performed 

with the 2D bounded cascade model of Cahalan [10] which offers the advantage that the 

properties of clouds (cloud fraction, degree of inhomogeneity, mean optical thickness) 

can be easily controlled. Optical thickness errors due to subsampling from MODIS 

largely mirrored those derived from the model clouds. The ranking of parameters 

according to error magnitude was the same (χ exhibited the smallest errors and νMOM the 

largest), the error decreased with cloud fraction and cloud homogeneity, and experienced 

rapid decline when averaged over ensembles of randomly generated cascade fields. 

The results in this paper provide guidance to users of MODIS Level-3 cloud 

products on the range of errors due to subsampling they should expect and perhaps 

account for, in scientific work with this dataset. Although the findings do not come from 

a global dataset of successive satellite orbits which would allow the Level-3 1°x1° 

aggregation and subsampling algorithm to be better imitated (a non-trivial exercise by 

any means), it would probably be safe to conclude that subsampling errors should not be 

a serious concern for individual gridpoints of MODIS D3 (daily) data that have 

undergone moderate additional temporal averaging (~2% error for monthly values of 

mean optical thickness and ~3% for mean effective radius), or for spatial averages such 

as zonal averages (~0.5% and ~2.5% for means of optical thickness and effective radius, 

respectively). Still, a study of the type shown here, but with a global dataset from 

successive orbits spanning over a month or longer, and which would perhaps examine 

other SDSs as well, would give a more definitive answer on the impact of MODIS Level-

3 subsampling. 
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List of figures 

Figure 1 Subsampling error in the mean and standard deviation of optical thickness (both 

in %) for each 110x110 pixel region of our dataset. The numbers in the corners are the 

percentage of regions with errors falling into each of the four quadrants. Note that there 

were few regions whose errors fell outside the axis limits (±50%) of this plot. 

Figure 2 Subsampling error in CF and χ (both in %) for each 110x110 pixel region of 

our dataset (top), and subsampling error of χ as a function of the actual (perfectly-

sampled) cloud fraction of each region (bottom). 

Figure 3 Mean error (in %) for various statistics of optical thickness as a function of 

cloud fraction. The right ordinate shows the number of 110x110 pixel regions with cloud 

fraction that falls within each 0.1-width bin (regions with cloud fractions less than 0.1 

were omitted). 

Figure 4 Mean error (in %) of χ and νMLE for each of the 1000 ensembles of 30- and 

10000- 110x110 pixel regions as a function of the mean value of the ensemble obtained 

with perfect sampling. 

Figure 5 Top: Subsampling error range (in %) that contains 95% of the 1000 ensembles 

each of which is made of the number of 110x110 pixel regions shown in the abscissa; 

bottom: as in top panel, but for 1000 ensembles of 30 regions of the size shown in the 

abscissa. 

Figure 6 As in Fig. 1, but for effective radius. 

Figure 7 As in Fig. 3, but for mean and standard deviation of effective radius. 

Figure 8 As in Fig. 4, but for mean and standard deviation of effective radius. 
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Figure 9 As in Fig. 5, but for mean and standard deviation of effective radius. 

Figure 10 As the bottom panel of Fig. 5 (save the cloud fraction), but when histograms 

from subsampled data are used to reconstruct the optical thickness statistics or 

inhomogeneity parameters. Top panel shows results when the Level-3 binning for liquid 

clouds is used, and bottom panel when ice cloud binning is used.  

Figure 11 As Fig. 10, but for mean and standard deviation of effective radius. 
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